Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 9032, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641526

RESUMO

Semi-conducting Fe oxide minerals, such as hematite, are well known to influence the fate of contaminants and nutrients in many environmental settings through sorption and release of Fe(II) resulting from microbial or abiotic reduction. Studies of Fe oxide reduction by adsorbed Fe(II) have demonstrated that reduction of Fe(III) at one mineral surface can result in the release of Fe(II) on a different one. This process is termed "Fe(II) catalyzed recrystallization" and is believed to be the result of electron transfer through semi-conducting Fe (hydr)oxides. While it is well understood that Fe(II) plays a central role in redox cycling of elements, the environmental implications of Fe(II) catalyzed recrystallization require further exploration. Here, we demonstrate that hematite links physically separated redox reactions by conducting the electrons involved in those reactions. This is shown using an electrochemical setup where Cr reduction is coupled with a potentiostat or Shewanella putrefaciens, a metal reducing microbe, where electrons donated to hematite produce Fe(II) that ultimately reduces Cr. This work demonstrates that mineral semi-conductivity may provide an additional avenue for redox chemistry to occur in natural soils and sediments, because these minerals can link redox active reactants that could not otherwise react due to physical separation.


Assuntos
Cromo , Compostos Férricos , Compostos Férricos/química , Compostos Ferrosos , Minerais/química , Óxidos
2.
J Synchrotron Radiat ; 28(Pt 2): 461-471, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650558

RESUMO

The study of in situ microscale biogeochemical processes represents a major challenge in the environmental sciences. The combination of microfluidic devices with X-ray fluorescence microprobe spectroscopy may address this need, but typical materials used in these devices attenuate the X-rays needed to analyze key elements of interest, such as Fe or As. In this work, a method is presented for fabricating an etched silicon microfluidic device that is sealed with a 30 µm thin glass window that is sufficiently transparent for X-ray fluorescence microprobe spectroscopy. The capabilities of these devices for X-ray microprobe spectroscopy are demonstrated using an Fe (hydr)oxide solid that is loaded with As and then infused with sulfide, on beamline 4-BM at NSLS-II, resulting in time-variant Fe precipitation reactions and As sorption. Key results include in situ X-ray fluorescence time-series maps of Fe, As and a Br flow tracer, as well as spot XANES at both the Fe K edge and As K edge. Additionally, multiple energy mapping is used to examine the spatial speciation of As over time. The results of this work clearly demonstrate the capabilities of this novel microfluidic system that can be analyzed using X-ray fluorescence microprobe spectroscopy and can be made to study a wide range of complex microscale geochemical systems.

3.
Front Microbiol ; 12: 705501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35250895

RESUMO

Quantifying the flux of methane from terrestrial environments remains challenging, owing to considerable spatial and temporal variability in emissions. Amongst a myriad of factors, variation in the composition of electron acceptors, including metal (oxyhydr)oxides, may impart controls on methane emission. The purpose of this research is to understand how iron (oxyhydr)oxide minerals with varied physicochemical properties influence microbial methane production and subsequent microbial community development. Incubation experiments, using lake sediment as an inoculum and acetate as a carbon source, were used to understand the influence of one poorly crystalline iron oxide mineral, ferrihydrite, and two well-crystalline minerals, hematite and goethite, on methane production. Iron speciation, headspace methane, and 16S-rRNA sequencing microbial community data were measured over time. Substantial iron reduction only occurred in the presence of ferrihydrite while hematite and goethite had little effect on methane production throughout the incubations. In ferrihydrite experiments the time taken to reach the maximum methane production rate was slower than under other conditions, but methane production, eventually occurred in the presence of ferrihydrite. We suggest that this is due to ferrihydrite transformation into more stable minerals like magnetite and goethite or surface passivation by Fe(II). While all experimental conditions enriched for Methanosarcina, only the presence of ferrihydrite enriched for iron reducing bacteria Geobacter. Additionally, the presence of ferrihydrite continued to influence microbial community development after the onset of methanogenesis, with the dissimilarity between communities growing in ferrihydrite compared to no-Fe-added controls increasing over time. This work improves our understanding of how the presence of different iron oxides influences microbial community composition and methane production in soils and sediments.

5.
Environ Sci Technol ; 53(21): 12639-12647, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31584265

RESUMO

226Ra is a naturally occurring radionuclide with a half-life of 1600 years. In contrast, 90Sr is a radionuclide of sole anthropogenic origin, produced by nuclear fission reactions and has a half-life of 29 years; each of these radionuclides poses potential threats to human and ecosystem health. Here, the cyanobacterium Gloeomargarita lithophora, capable of forming intracellular amorphous calcium carbonate inclusions, was investigated for its ability to uptake 226Ra and 90Sr. In BG-11 medium, G. lithophora accumulated 3.9 µg g-1 of 226Ra within 144 h and 47.9 ng g-1 of 90Sr within 1 h, corresponding to ∼99% removal of trace radionuclides. The presence of high-concentration Ca2+ in the background media solution did not inhibit 90Sr and 226Ra uptake by G. lithophora. In contrast, dead biomass of G. lithophora accumulated 0.8 µg g-1 of 226Ra and 8.87 ng g-1 of 90Sr. Moreover, Synechocystis, a nonbiomineralizing cyanobacteria, removed only 14 and 25% of 226Ra and 90Sr, respectively. This suggested that sequestration of 90Sr and 226Ra was not intrinsic to all cyanobacteria but was likely a specific biological trait of G. lithophora related to the formation of intracellular amorphous Ca-carbonates. The unique ability of G. lithophora to uptake 90Sr and 226Ra at high rates makes it an attractive candidate for further studies involving bioremediation of these radionuclides.


Assuntos
Cianobactérias , Rádio (Elemento) , Cálcio , Carbonato de Cálcio , Ecossistema , Estrôncio , Radioisótopos de Estrôncio
6.
Environ Sci Process Impacts ; 21(10): 1764-1776, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31553335

RESUMO

Produced water generated during unconventional oil and gas extractions contains a complex milieu of natural and anthropogenic potentially toxic chemical constituents including arsenic (As), chromium (Cr), and cadmium (Cd), naturally occurring radioactive materials (NORMs) including U and Ra, and a myriad of organic compounds. The human-ecological health risks and challenges associated with the disposal of produced water may be alleviated by understanding geochemical controls on processes responsible for the solubilization of potentially hazardous natural shale constituents to produced water. Here, we investigated, through a series of batch treatments, the leaching behavior of As, Se, Cu, Fe, Ba, Cr, Cd, and radioactive nuclides U, Ra from shale to produced water. Specifically, the effect of four major controls on element mobility was studied: (1) solution pH, (2) ionic strength of the solution, (3) oxic-anoxic conditions, and (4) an additive used in fracking fluid. The mobilization of metals and metalloids from shale was greatest in treatments containing sodium persulfate, an oxidant and a commonly used additive in fracture fluid. In the high ionic strength treatments, dissolved Ba concentrations increased 5-fold compared to low ionic strength treatments. Overall, anoxic conditions superimposed with low pH resulted in the largest increase of dissolved metals and radionuclides such as Ra. Overall, our results suggest that (1) limiting pore water acidification by injection of alkaline fluid in carbonate-low shale and (2) minimizing strong oxidizing conditions in shale formations may result in cost-effective in situ retention of produced water contaminants.


Assuntos
Fraturamento Hidráulico , Radioisótopos/análise , Oligoelementos/análise , Arsênio/análise , Arsênio/química , Bário/análise , Bário/química , Cádmio/análise , Cádmio/química , Cromo/análise , Cromo/química , Cobre/análise , Cobre/química , Concentração de Íons de Hidrogênio , Ferro/análise , Ferro/química , Gás Natural , Concentração Osmolar , Oxigênio/análise , Radioisótopos/química , Rádio (Elemento)/análise , Rádio (Elemento)/química , Selênio/análise , Selênio/química , Oligoelementos/química , Urânio/análise , Urânio/química
7.
Environ Sci Technol ; 52(7): 4023-4030, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29504749

RESUMO

Radium (Ra) is a radioactive element commonly found within soils, sediments, and natural waters. Elevated Ra activities arising through natural and anthropogenic processes pose a threat to groundwater resources and human health, and Ra isotope ratios are used to decipher groundwater movement, estimate submarine discharge flux, and fingerprint contamination associated with hydraulic fracturing operations. Although adsorption to metal (hydr)oxides and certain clay minerals is well established as a dominant mechanism controlling Ra transport and retention, the extent of Ra sorption to other minerals and under variable environmental conditions (e.g., pH and salinity) is limited. Accordingly, we present results of sorption studies and surface complexation modeling (SCM) of Ra to ferrihydrite, goethite, montmorillonite, and pyrite, for a range of pH values and common background cations. Ra sorption to all substrates is observed under geochemical conditions considered, but varies according to mineral, solution pH and specific competing cations. Literature derived SCMs for Ra sorption were fitted to match either sorption impacts due to pH or different background cations, but were not able to predict the impacts of different geochemical conditions. Despite this, the use of SCMs provided a more mechanistic understanding of Ra sorption as compared to commonly used distribution coefficients.


Assuntos
Bentonita , Rádio (Elemento) , Adsorção , Ferro , Minerais , Óxidos , Sulfetos
8.
Environ Sci Technol ; 50(8): 4248-58, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27018915

RESUMO

Manganese oxides are often highly reactive and easily reduced, both abiotically, by a variety of inorganic chemical species, and biologically during anaerobic respiration by microbes. To evaluate the reaction mechanisms of these different reduction routes and their potential lasting products, we measured the sequence progression of microbial manganese(IV) oxide reduction mediated by chemical species (sulfide and ferrous iron) and the common metal-reducing microbe Shewanella oneidensis MR-1 under several endmember conditions, using synchrotron X-ray spectroscopic measurements complemented by X-ray diffraction and Raman spectroscopy on precipitates collected throughout the reaction. Crystalline or potentially long-lived phases produced in these experiments included manganese(II)-phosphate, manganese(II)-carbonate, and manganese(III)-oxyhydroxides. Major controls on the formation of these discrete phases were alkalinity production and solution conditions such as inorganic carbon and phosphate availability. The formation of a long-lived Mn(III) oxide appears to depend on aqueous Mn(2+) production and the relative proportion of electron donors and electron acceptors in the system. These real-time measurements identify mineralogical products during Mn(IV) oxide reduction, contribute to understanding the mechanism of various Mn(IV) oxide reduction pathways, and assist in interpreting the processes occurring actively in manganese-rich environments and recorded in the geologic record of manganese-rich strata.


Assuntos
Compostos de Manganês/química , Óxidos/química , Shewanella/metabolismo , Biodegradação Ambiental , Carbonatos/química , Carbonatos/metabolismo , Ferro/química , Manganês/química , Manganês/metabolismo , Compostos de Manganês/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Oxirredução , Óxidos/metabolismo , Análise Espectral Raman , Sulfetos/química , Água/metabolismo , Espectroscopia por Absorção de Raios X , Difração de Raios X
9.
Environ Sci Technol ; 48(23): 13660-7, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25346449

RESUMO

In floodplain soils, As may be released during flooding-induced soil anoxia, with the degree of mobilization being affected by microbial redox processes such as the reduction of As(V), Fe(III), and SO4(2-). Microbial SO4(2-) reduction may affect both Fe and As cycling, but the processes involved and their ultimate consequences on As mobility are not well understood. Here, we examine the effect of microbial SO4(2) reduction on solution dynamics and solid-phase speciation of As during flooding of an As-contaminated soil. In the absence of significant levels of microbial SO4(2-) reduction, flooding caused increased Fe(II) and As(III) concentrations over a 10 week period, which is consistent with microbial Fe(III)- and As(V)-reduction. Microbial SO4(2-) reduction leads to lower concentrations of porewater Fe(II) as a result of FeS formation. Scanning electron microscopy with energy dispersive X-ray fluorescence spectroscopy revealed that the newly formed FeS sequestered substantial amounts of As. Bulk and microfocused As K-edge X-ray absorption near-edge structure spectroscopy confirmed that As(V) was reduced to As(III) and showed that in the presence of FeS, solid-phase As was retained partly via the formation of an As2S3-like species. High resolution transmission electron microscopy suggested that this was due to As retention as an As2S3-like complex associated with mackinawite (tetragonal FeS) rather than as a discrete As2S3 phase. This study shows that mackinawite formation in contaminated floodplain soil can help mitigate the extent of arsenic mobilization during prolonged flooding.


Assuntos
Arsênio/análise , Inundações , Ferro/análise , Microbiologia do Solo , Poluentes do Solo/análise , Sulfatos/metabolismo , Arsênio/química , Austrália , Compostos Ferrosos/química , Ferro/química , Oxirredução , Poluentes do Solo/química , Soluções , Espectrometria por Raios X/métodos , Sulfatos/química , Espectroscopia por Absorção de Raios X
10.
Environ Sci Technol ; 48(1): 218-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24274659

RESUMO

Microbiological reduction of millimolar concentrations of Sb(V) to Sb(III) was observed in anoxic sediments from two freshwater settings: (1) a Sb- and As-contaminated mine site (Stibnite Mine) in central Idaho and 2) an uncontaminated suburban lake (Searsville Lake) in the San Francisco Bay Area. Rates of Sb(V) reduction in anoxic sediment microcosms and enrichment cultures were enhanced by amendment with lactate or acetate as electron donors but not by H2, and no reduction occurred in sterilized controls. Addition of 2-(14)C-acetate to Stibnite Mine microcosms resulted in the production of (14)CO2 coupled to Sb(V) reduction, suggesting that this process proceeds by a dissimilatory respiratory pathway in those sediments. Antimony(V) reduction in Searsville Lake sediments was not coupled to acetate mineralization and may be associated with Sb-resistance. The microcosms and enrichment cultures also reduced sulfate, and the precipitation of insoluble Sb(III)-sulfide complexes was a major sink for reduced Sb. The reduction of Sb(V) by Stibnite Mine sediments was inhibited by As(V), suggesting that As(V) is a preferred electron acceptor for the indigenous community. These findings indicate a novel pathway for anaerobic microbiological respiration and suggest that communities capable of reducing high concentrations of Sb(V) commonly occur naturally in the environment.


Assuntos
Antimônio/análise , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Antimônio/metabolismo , Arsênio/análise , Biodegradação Ambiental , California , Água Doce/química , Idaho , Lagos/análise , Lagos/química , Lagos/microbiologia , Mineração , Oxirredução , Sulfatos/química , Sulfatos/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
11.
J Environ Qual ; 42(4): 1119-29, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24216363

RESUMO

Reduction of As(V) and Fe(III) is commonly the dominant process controlling the fate and transport of As in soils and sediments. However, the physical structure of such environments produces complex heterogeneity in biogeochemical processes controlling the fate and transport of As. To resolve the role of soil and sediment physical structure on the distribution of biogeochemical processes controlling the fate and transport of As, we examined the biogeochemical transformations of As and Fe within constructed aggregates-a fundamental unit of soil structure. Spherical aggregates were made with As(V)- or As(III)-bearing, ferrihydrite-coated quartz that was fused with agarose and placed in a cylindrical reactor; advective flow of anoxic solutes was then initiated around the aggregates to examine As release from a dual-pore domain system. To examine the impact of biotic As(V) and Fe(III) reduction, constructed aggregates having As(V)-bearing, ferrihydrite-coated quartz inoculated with sp. ANA-3 were placed in flow-through reactors under anoxic and aerated advective flow. Consistent with desorption from advective columns, As(III) is released to advecting water more prevalently than As(V) within abiotic aggregate systems, indicating a greater lability and concomitant enhanced propensity for transport of As(III) relative to As(V). During reaction with , As release to advecting water was similar between anoxic and aerated systems for the first 20 d; thereafter, the anoxic advecting solutes increased As release relative to the aerated counterpart. With aerated advecting solutes, Fe remained oxidized (or was oxidized) in the aggregate exterior, forming a protective barrier that limited As release to the advective channel. However, anaerobiosis within the aggregate interior, even with aerated advective flow, promotes internal repartitioning of As to the exterior region.


Assuntos
Arsênio , Solo , Arsênio/química , Compostos Férricos/química , Ferro/química , Oxirredução
12.
Front Microbiol ; 3: 109, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470372

RESUMO

Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park. Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 88°C and pH 2.4 to 3.6. All iron oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly similar to Metallosphaera yellowstonensis str. MK1, previously isolated from one of these sites. Other groups of archaea were consistently associated with different types of iron oxide mats, including undescribed members of the phyla Thaumarchaeota and Euryarchaeota. Bacterial sequences were dominated by relatives of Hydrogenobaculum spp. above 65-70°C, but increased in diversity below 60°C. Cultivation of relevant iron-oxidizing and iron-reducing microbial isolates included Sulfolobus str. MK3, Sulfobacillus str. MK2, Acidicaldus str. MK6, and a new candidate genus in the Sulfolobales referred to as Sulfolobales str. MK5. Strains MK3 and MK5 are capable of oxidizing ferrous iron autotrophically, while strain MK2 oxidizes iron mixotrophically. Similar rates of iron oxidation were measured for M. yellowstonensis str. MK1 and Sulfolobales str. MK5. Biomineralized phases of ferric iron varied among cultures and field sites, and included ferric oxyhydroxides, K-jarosite, goethite, hematite, and scorodite depending on geochemical conditions. Strains MK5 and MK6 are capable of reducing ferric iron under anaerobic conditions with complex carbon sources. The combination of geochemical and molecular data as well as physiological observations of isolates suggests that the community structure of acidic Fe mats is linked with Fe cycling across temperatures ranging from 53 to 88°C.

13.
Environ Sci Technol ; 45(13): 5572-9, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21648436

RESUMO

The speciation and partitioning of arsenic (As) in surface and subsurface environments are controlled, in part, by redox processes. Within soils and sediments, redox gradients resulting from mass transfer limitations lead to competitive reduction-oxidation reactions that drive the fate of As. Accordingly, the objective of this study was to determine the fate and redox cycling of As at the interface of birnessite (a strong oxidant in soil with a nominal formula of MnO(x), where x ≈ 2) and dissimilatory As(V)-reducing bacteria (strong reductant). Here, we investigate As reduction-oxidation dynamics in a diffusively controlled system using a Donnan reactor where birnessite and Shewanella sp. ANA-3 are isolated by a semipermeable membrane through which As migrates. Arsenic(III) injected into the reaction cell containing birnessite is rapidly oxidized to As(V). Arsenic(V) diffusing into the Shewanella chamber is then reduced to As(III), which subsequently diffuses back to the birnessite chamber, undergoing oxidation, and establishing a continuous cycling of As. However, we observe a rapid decline in the rate of As(III) oxidation owing to passivation of the birnessite surface. Modeling and experimental results show that high [Mn(II)] combined with increasing [CO(3)(2-)] from microbial respiration leads to the precipitation of rhodochrosite, which eventually passivates the Mn oxide surface, inhibiting further As(III) oxidation. Our results show that despite the initial capacity of birnessite to rapidly oxidize As(III), the synergistic effect of intense As(V) reduction by microorganisms and the buildup of reactive metabolites capable of passivating reactive mineral surfaces-here, birnessite-will produce (bio)geochemical conditions outside of those based on thermodynamic predictions.


Assuntos
Arsênio/química , Arsênio/metabolismo , Sedimentos Geológicos/análise , Óxidos/química , Shewanella/metabolismo , Solo/análise , Modelos Químicos , Oxirredução , Termodinâmica
14.
Environ Sci Technol ; 45(2): 582-8, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21158450

RESUMO

Soils are an aggregate-based structured media that have a multitude of pore domains resulting in varying degrees of advective and diffusive solute and gas transport. Consequently, a spectrum of biogeochemical processes may function at the aggregate scale that collectively, and coupled with solute transport, determine element cycling in soils and sediments. To explore how the physical structure impacts biogeochemical processes influencing the fate and transport of As, we examined temporal changes in speciation and distribution of As and Fe within constructed aggregates through experimental measurement and reactive transport simulations. Spherical aggregates were made with As(V)-bearing ferrihydrite-coated sand inoculated with Shewanella sp. ANA-3; aerated solute flow around the aggregate was then induced. Despite the aerated aggregate exterior, where As(V) and ferrihydrite persist as the dominant species, anoxia develops within the aggregate interior. As a result, As and Fe redox gradients emerge, and the proportion of As(III) and magnetite increases toward the aggregate interior. Arsenic(III) and Fe(II) produced in the interior migrate toward the aggregated exterior and result in coaccumulation of As and Fe(III) proximal to preferential flow paths as a consequence of oxygenic precipitation. The oxidized rind of aggregates thus serves as a barrier to As release into advecting pore-water, but also leads to be a buildup of this hazardous element at preferential flow boundaries that could be released upon shifting geochemical conditions.


Assuntos
Arsênio/metabolismo , Ferro/metabolismo , Poluentes do Solo/metabolismo , Arsênio/química , Biotransformação , Precipitação Química , Fenômenos Ecológicos e Ambientais , Compostos Férricos/química , Ferro/química , Modelos Biológicos , Modelos Químicos , Oxirredução , Shewanella/metabolismo , Poluentes do Solo/química , Espectroscopia por Absorção de Raios X
15.
Environ Sci Technol ; 43(13): 4871-7, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19673278

RESUMO

Arsenic is a widespread environmental toxin having devastating impacts on human health. A transition to anaerobic conditions is a key driver for promoting As desorption through either the reduction of As(V) or the reductive dissolution of Fe(III) (hydr)oxides. However, a disparity in the reported release sequence for As and Fe to the aqueous solution hinders our ability to determine the controlling factors liberating As to the aqueous environment. Accordingly, we performed a thermodynamic analysis of Fe, using a range of Fe-(hydr)oxides, and As reduction coupled with hydrogen, acetate, and lactate oxidation for a range of relevant field conditions. The favorability of sulfate reduction is also evaluated. Our results illustrate that As reduction is favorable over a wide-range of field conditions, and Fe reduction is differentially favorable depending on the buildup of metabolites (mainly Fe2+) and the Fe (hydr)oxide being reduced; reduction of As(V) is thermodynamically favorable under most environmental conditions and almost always more favorable than goethite and hematite reduction. Sulfate reduction is favorable over a range of conditions, and may occur concomitantly with Fe reduction depending on the Fe (hydr)oxides present. Thus, on a thermodynamic basis, the general sequence of microbial reduction should be As(V) followed by Fe(III) or sulfate.


Assuntos
Arsênio/análise , Arsênio/toxicidade , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Poluentes do Solo/análise , Adsorção , Camboja , Exposição Ambiental , Compostos Férricos/análise , Humanos , Concentração de Íons de Hidrogênio , Ferro/análise , Ferro/química , Sulfatos/análise , Sulfatos/química , Termodinâmica
16.
Nature ; 454(7203): 505-8, 2008 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-18650922

RESUMO

Tens of millions of people in south and southeast Asia routinely consume ground water that has unsafe arsenic levels. Arsenic is naturally derived from eroded Himalayan sediments, and is believed to enter solution following reductive release from solid phases under anaerobic conditions. However, the processes governing aqueous concentrations and locations of arsenic release to pore water remain unresolved, limiting our ability to predict arsenic concentrations spatially (between wells) and temporally (future concentrations) and to assess the impact of human activities on the arsenic problem. This uncertainty is partly attributed to a poor understanding of groundwater flow paths altered by extensive irrigation pumping in the Ganges-Brahmaputra delta, where most research has focused. Here, using hydrologic and (bio)geochemical measurements, we show that on the minimally disturbed Mekong delta of Cambodia, arsenic is released from near-surface, river-derived sediments and transported, on a centennial timescale, through the underlying aquifer back to the river. Owing to similarities in geologic deposition, aquifer source rock and regional hydrologic gradients, our results represent a model for understanding pre-disturbance conditions for other major deltas in Asia. Furthermore, the observation of strong hydrologic influence on arsenic behaviour indicates that release and transport of arsenic are sensitive to continuing and impending anthropogenic disturbances. In particular, groundwater pumping for irrigation, changes in agricultural practices, sediment excavation, levee construction and upstream dam installations will alter the hydraulic regime and/or arsenic source material and, by extension, influence groundwater arsenic concentrations and the future of this health problem.


Assuntos
Arsênio/análise , Água Doce/química , Sedimentos Geológicos/química , Movimentos da Água , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Áreas Alagadas , Intoxicação por Arsênico/epidemiologia , Ásia/epidemiologia , Monitoramento Ambiental , Monitoramento Epidemiológico , Humanos , Rios/química
17.
Environ Sci Technol ; 40(21): 6715-21, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17144301

RESUMO

Reduction of arsenate As(V) and As-bearing Fe (hydr)- oxides have been proposed as dominant pathways of As release within soils and aquifers. Here we examine As elution from columns loaded with ferrihydrite-coated sand presorbed with As(V) or As(III) at circumneutral pH upon Fe and/or As reduction; biotic stimulated reduction is then compared to abiotic elution. Columns were inoculated with Shewanella putrefaciens strain CN-32 or Sulfurospirillum barnesii strain SES-3, organisms capable of As (V) and Fe (III) reduction, or Bacillus benzoevorans strain HT-1, an organism capable of As(V) but not Fe(III) reduction. On the basis of equal surface coverages, As(III) elution from abiotic columns exceeded As(V) elution by a factor of 2; thus, As(III) is more readily released from ferrihydrite under the imposed reaction conditions. Biologically mediated Asreduction induced by B. benzoevorans enhances the release of total As relative to As (V) under abiotic conditions. However, under Fe reducing conditions invoked by either S. barnesii or S. putrefaciens, approximately three times more As (V or III) was retained within column solids relative to the abiotic experiments, despite appreciable decreases in surface area due to biotransformation of solid phases. Enhanced As sequestration upon ferrihydrite reduction is consistent with adsorption or incorporation of As into biotransformed solids. Our observations indicate that As retention and release from Fe (hydr)oxide(s) is controlled by complex pathways of Fe biotransformation and that reductive dissolution of As-bearing ferrihydrite can promote As sequestration rather than desorption under conditions examined here.


Assuntos
Arsênio/química , Ferro/química , Adsorção , Bacillus/metabolismo , Biodegradação Ambiental , Meio Ambiente , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Modelos Teóricos , Shewanella/metabolismo , Solubilidade , Fatores de Tempo
18.
Environ Toxicol Chem ; 23(4): 982-9, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15095895

RESUMO

Geothermal activity in Yellowstone National Park (WY, USA) (YNP) results in elevated levels of arsenic in surface waters, aquatic vegetation, and sediments in the Upper Madison River Basin. This study was conducted to determine concentrations of arsenic in the tissues, feces, and rumen contents of elk (Cervus elaphus) residing in the Madison-Firehole (MF) River basin, and to evaluate potential arsenic exposure pathways. Concentrations of total arsenic in MF elk were significantly higher than in control elk populations, and analysis of arsenic in surface waters, elk forage, sediments, and soils suggests that the predominant arsenic exposure pathways are forage species found in aquatic and riparian habitats. Analysis of arsenic species in selected plant and elk samples indicated that the ingested forms of arsenic are predominantly inorganic, while the appearance of dimethylarsonate in elk rumen and feces suggests that arsenic is subject to methylation reactions after ingestion, potentially contributing to arsenic detoxification. Arsenic:creatinine ratios of elk urine samples analyzed across three different winters increased during winter progression and were correlated with total snow water equivalent as an index of winter severity. Exposure to arsenic and other trace elements (fluorine) may contribute to the previously observed decreased life expectancy of MF elk relative to control populations.


Assuntos
Arsênio/farmacocinética , Cervos , Exposição Ambiental , Poluentes do Solo/farmacocinética , Poluentes da Água/farmacocinética , Abastecimento de Água , Animais , Arsênio/análise , Dieta , Meio Ambiente , Fezes/química , Feminino , Expectativa de Vida , Plantas Comestíveis , Rúmen/química , Estações do Ano , Poluentes do Solo/análise , Distribuição Tecidual , Estados Unidos , Poluentes da Água/análise
19.
Langmuir ; 20(12): 4996-5006, 2004 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-15984260

RESUMO

The effects of the adsorption of a simple dicarboxylate low molecular weight organic anion, maleate, on the dissolution of a model aluminum oxide, corundum (alpha-Al2O3), have been examined over a range of different maleate concentrations (0.125-5.0 mM) and pH conditions (2-10). In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic measurements indicate that maleate binds predominantly as an outer-sphere, fully deprotonated complex ([triple bond]AlOH2+ -Mal2-) at the corundum surface over the entire range of maleate concentrations and pH conditions investigated. In accordance with the ATR-FTIR findings, macroscopic adsorption data can be modeled as a function of maleate concentration and pH using an extended constant capacitance approach and a single [triple bond]AlOH2+ -Mal2- species. Outer-sphere adsorption of maleate is found to significantly reduce the protolytic dissolution rate of corundum under acidic conditions (pH < 5). A likely mechanism involves steric protection of dissolution-active surface sites, whereby strong outer-sphere interactions with maleate hinder attack on those surface sites by dissolution-promoting species.


Assuntos
Óxido de Alumínio/química , Maleatos/farmacocinética , Água/química , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Environ Sci Technol ; 37(8): 1581-8, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12731841

RESUMO

Photochemical reactions involving aqueous Fe(III) complexes are known to generate free radical species such as OH* that are capable of oxidizing numerous inorganic and organic compounds. Recent work has shown that As(III) can be oxidized to As(V) via photochemical reactions in ferric-citrate solutions; however, the mechanisms of As(III) oxidation and the potential importance of photochemical oxidation in natural waters are poorly understood. Consequently, the objectives of this study were to evaluate oxidation rates of As(III) in irradiated ferrioxalate solutions as a function of pH, identify mechanisms of photochemical As(III) oxidation, and evaluate the oxidation of As(III) in a representative natural water containing dissolved organic C (DOC). The oxidation of As(III) was studied in irradiated ferrioxalate solutions as a function of pH (3-7), As(III), Fe(III), and 2-propanol concentration. Rates of As(III) oxidation (0.5-254 microM h(-1)) were first-order in As(III) and Fe(III) concentration and increased with decreasing pH. Experiments conducted at pH 5.0 using 2-propanol as an OH* scavenger in light and dark reactions suggested that OH* is the important free radical responsible for As(III) oxidation. Significant rates of As(III) oxidation (4-6 microM h(-1)) were also observed in a natural water sample containing DOC, indicating that photochemical oxidation of As(III) may contribute to arsenic (As) cycling in natural waters.


Assuntos
Arsênio/química , Compostos Férricos/química , Poluentes da Água/análise , Radicais Livres , Concentração de Íons de Hidrogênio , Oxirredução , Fotoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...